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Abstract

Extended Graetz problem in microchannel is analyzed by using eigenfunction expansion to solve the energy equation. The hydrody-
namically developed flow is assumed to enter the microchannel with uniform temperature or uniform heat flux boundary condition. The
effects of velocity and temperature jump boundary condition on the microchannel wall, streamwise conduction and viscous dissipation
are all included. From the temperature field obtained, the local Nusselt number distributions are shown as the dimensionless parameters
(Peclet number, Knudsen number, Brinkman number) vary. The fully developed Nusselt number for each boundary condition is
obtained also in terms of these parameters.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, the electronic system becomes smaller and
more complex due to the rapid development of semicon-
ductor technology. The trend of high speed and density
of electronic system can lead to serious problem in heat
transfer, since large amount of heat per unit area must be
dissipated. A great deal of research about micromachines
such as microchannel are being carried out to discover
the effective cooling technique. However, many experi-
ments have shown that fluid flow and heat transfer charac-
teristics in microtube and microchannel deviate from the
well known traditional approaches based on the continuum
flow assumption [1,2].

As the size of a channel is reduced, the no-slip boundary
conditions need to be modified so that velocity slip and
temperature jump may occur on the wall. The slip bound-
ary condition may be used when gases are at low pressure
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or for flow in extremely small passages. The rarefaction
effects of a gas are included by the Knudsen number Kn,
the ratio of the mean free path to the characteristic length
in the flow field. Karniadakis and Beskok [3] have pro-
posed the range for the Knudsen number in slip flow
regime as 0.001 < Kn < 0.1.

The Graetz problem is a simplified problem of forced
convection heat transfer in a circular tube in laminar flow,
which is first solved by Graetz [4] analytically assuming
fully developed laminar flow and neglecting streamwise
heat conduction and viscous dissipation. Sellars et al. [5]
extended the Graetz problem including a more effective
approximation technique for evaluation of the eigenvalues
problem. Lahjomri et al. [6] solved the problem to include
streamwise conduction. Barron et al. [7] and Ameel et al.
[8] presented an analytical solution with uniform tempera-
ture and uniform heat flux boundary conditions, respec-
tively. Tunc and Bayazitoglu [9,10] solved the energy
equation with slip velocity and temperature jump bound-
ary conditions in a microtube and a rectangular micro-
channel analytically, considering viscous dissipation but
neglecting the streamwise conduction. Recently, Nield
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Nomenclature

An coefficients
Br Brinkman number: Br ¼ lu2

m=kðT 0 � T wÞ, lu2
m=

ðqwHÞ
C1 1þ 12 2�F

F Kn

C2
2�F t

F t

2c
cþ1

Kn
Pr

cp specific heat
Dh hydraulic diameter (Dh = 4H)
F tangential momentum accommodation coeffi-

cient
Ft thermal accommodation coefficient
h heat transfer coefficient
H half of channel height
k thermal conductivity
Kn Knudsen number (Kn = k/Dh)
L channel length
Nu Nusselt number (Nu = hDh/k)
P pressure
Pe Peclet number (Pe = Re Æ Pr = umDh/a)
Pr Prandtl number (Pr = m/a)
q Heat flux
Re Reynolds number (Re = umDh/m)
T temperature
u fluid velocity

x,y Cartesian coordinates
Yn eigenfunction
W channel width

Greek symbols

a thermal diffusivity
b eigenvalue
c specific heat ratio
k molecular mean free path
l dynamic viscosity
m kinematic viscosity
h dimensionless temperature h = (T � Tw)/

(T0 � Tw), k(T � T0)/(qwH)

Subscripts

m mean values
s fluid properties at the wall
w wall values
0 inlet properties
1 infinite properties

Superscript

* dimensionless variables

T=Tw or q=q w
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et al. [11–14] investigated thermally developing forced con-
vection in channel or circular duct occupied by porous
medium. In the most analysis of the Graetz problems
extended, the effects of streamwise conduction and viscous
dissipation are not included simultaneously. But, if we use
working fluid of high conductivity in heat exchangers and
fluid velocity is high, we have to consider both streamwise
conduction and viscous dissipation. In this paper, we
analyze the extended Graetz problem in a flat channel
including effects of rarefaction, streamwise conduction
and viscous dissipation altogether. The flow is assumed
to be fully developed Poiseuille flow while the temperature
profile is just being developed. Two types of heat boundary
condition on the wall, isothermal and constant heat flux,
are considered. By the results, temperature distributions
in the channel are determined with parameters (Knudsen
number Kn, Peclet number Pe, and Brinkman number
Br) and Nusselt number distributions on the wall are
shown for some specific values of parameters. Nusselt
numbers for thermally developed state far down stream
in the channel are obtained as functions of the parameters.
T
=

T
0

H

Fig. 1. Definition sketch.
2. Analysis

2.1. Uniform temperature on the walls

The steady-state hydrodynamically developed flow with
constant temperature T0 enters into the microchannel as
illustrated in Fig. 1. The fluid temperature would change
from the value T0 at the entrance to the value Tw on the
walls. Assuming laminar incompressible flow, the govern-
ing energy equation and boundary condition can be estab-
lished as

qcpu
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ox
¼ k

o
2T

ox2
þ o

2T
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� �
þ l

ou
oy

� �2

ð1Þ
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where u is the fully developed velocity profile in the
channel,

uðyÞ ¼ �H 2

2l
dP
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which satisfies the slip boundary condition

u ¼ � 2� F
F

k
ou
oy

� �
at y ¼ �H ð6Þ

We define dimensionless variables

h ¼ T � T w

T 0 � T w

; x� ¼ x
Re � Pr � H ; y� ¼ y

H
;

Br ¼ lu2
m

kðT 0 � T wÞ

then dimensionless form of Eq. (1) is
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By the symmetry of the flow field and boundary conditions,
we may confine our flow region to 0 6 x 61, 0 6 y 6 1.
For convenience, we abbreviate the symbol * hereafter.
Then, the governing equation and boundary conditions are

1

4
u
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h ¼ 1 at x ¼ 0 ð10Þ

h ¼ �4C2
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at y ¼ 1 ð11Þ
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¼ 0 at y ¼ 0 ð12Þ

As x!1, Eq. (9) becomes

o2h
oy2
¼ �Br

ou
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� �2

ð13Þ

since oh
ox ! 0.

The fully developed dimensionless temperature profile
h1 can be derived by integrating both sides of Eq. (13) with
boundary conditions (Eqs. (11) and (12))

h1ðyÞ ¼
Br

C2
1

� 3

4
ðy4 � 1Þ þ 12C2

� 	
ð14Þ

Now, we set

hðx; yÞ ¼ h1ðx; yÞ þ h1ðyÞ ð15Þ
then h1! 0 as x!1.

Substituting Eq. (15) into Eq. (9), we get

1

4
u

oh1

ox
¼ 1

Pe2

o2h1

ox2
þ o2h1

oy2
ð16Þ

Note that Eq. (16) is homogeneous and the method of
separation of variables may be used. Let h1ðx; yÞ ¼P1

n¼1AnX nðxÞY nðyÞ then we obtain two ordinary differential
equations
X 0nðxÞ þ b2
nX n ¼ 0 ð17Þ

Y 00nðyÞ þ b2
n

b2
n

Pe2
þ 1

4
u

� �
Y n ¼ 0 ð18Þ

with boundary conditions

Y 0nð0Þ ¼ 0; Y nð1Þ ¼ �4C2Y 0nð1Þ ð19Þ

where bn is eigenvalue associated with the eigenfunction
Yn(y). To obtain bn, Yn(y) (n = 1,2,3, . . .) numerically, the
shooting method for Eq. (18) is used. The eigenfunctions
Yn(y) (n = 1,2,3, . . .) are not orthogonal unless Pe!1.
The temperature distribution h(x,y) may now be written
as eigenfunction series expansion.

hðx; yÞ ¼ h1ðyÞ þ
X1
n¼1

An exp½�b2
nx�Y nðyÞ ð20Þ

The unknown coefficients An in Eq. (20) are determined
from the inlet boundary condition (10).

X1
n¼1

AnY nðyÞ ¼ 1� h1ðyÞ ð21Þ

To determine unknown coefficients An from Eq. (21), we
truncate the infinite series and use the Galerkin method
to minimize square of the error from Eq. (21) in
0 6 y 6 1. From the coefficients An calculated, dimension-
less temperature distribution in the channel is determined
as Eq. (20). The bulk mean temperature (hm) and Nusselt
number at the channel wall (Nu) may be calculated, respec-
tively, as

hmðxÞ ¼
Z 1

0

uðyÞ � hðx; yÞdy ð22Þ

NuðxÞ ¼ hðxÞDh

k
¼ � 4
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where velocity profile u(y) is given in Eq. (8). The average
convective heat transfer coefficient and the total heat flux
rate from the channel may be expressed as

�h ¼ 1

L

Z L

0

hðxÞdx; q ¼ �h � W � L � Dhlm ð24Þ

where

Dhlm �
hmð0Þ � hmðLÞ

ln hmð0Þ
hmðLÞ

¼ hmðLÞ � 1

ln hmðLÞ
;

since hm(0) = 1.

2.2. Uniform heat flux on the walls

When the heat flux qw is given on the both of channel
walls as illustrated Fig. 1, the following dimensionless vari-
ables are redefined as

h ¼ kðT � T 0Þ
qwH

; Br ¼ lu2
m

qwH
ð25Þ
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Fig. 2. Nusselt number distributions on the wall for uniform temperature
boundary condition. Rarefied effects are considered neglecting viscous
dissipation and streamwise conduction.
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since the temperature of channel wall is not constant.
Substituting Eq. (25) into energy Eq. (1) yields
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and boundary conditions are

h ¼ 0 at x ¼ 0 ð27Þ
oh
oy
¼ 0 at y ¼ 0 ð28Þ

oh
oy
¼ 1 at y ¼ 1 ð29Þ

Note that governing Eq. (26) and boundary condition (29)
are non-homogeneous. Therefore, we introduce a new var-
iable h1, such that
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Substituting Eq. (30) into Eq. (26)–(29), we obtain
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h1ð0; yÞ ¼ �h1ð0; yÞ at x ¼ 0 ð33Þ
oh1

oy
¼ 0 at y ¼ 0; 1 ð34Þ

Since governing Eq. (32) and boundary conditions (34) are
now homogeneous, we constitute eigenvalue problem in
similar way as the previous section.

X 0ðxÞ þ b2X ¼ 0 ð35Þ

Y 00ðyÞ þ b2 b2

Pe2
þ 1

4
u

� �
Y ¼ 0 ð36Þ

Y 0ð0Þ ¼ Y 0ð1Þ ¼ 0 ð37Þ

We can calculate eigenvalues and eigenfunctions using the
shooting method. Here, it should be mentioned that b = 0
is one of the eigenvalues and corresponding eigenfunction
is 1. Finally, we write dimensionless temperature profile as

hðx; yÞ ¼ h1ðx; yÞ þ A0 þ
X1
n¼1

An expð�b2
nxÞY nðyÞ ð38Þ

The Nusselt number is now easily determined as follows:

NuðxÞ ¼ hðxÞDh

k
¼ 4

hw � hm

ð39Þ

since oh
oy ¼ 1 at y = 1. In Eq. (39), hm is a bulk mean temper-

ature as defined in Eq. (22). The wall temperature hw in Eq.
(39) is given by

hwðxÞ ¼ hðx; 1Þ þ 4C2 ð40Þ
3. Results and discussion

We first compared our results with those of the classical
Graetz problem (Pe!1, Br = Kn = 0) to verify the valid-
ity of present calculations. In the calculation, we take
Pe = 106 instead of Pe =1 to see the cases where stream-
wise conduction term is neglected in energy equation. The
results show quite good agreement, which means that
eigenvalues and eigenfunctions calculated in the previous
section are very accurate. In this work, we found that it
is possible to determine as many eigenvalues and eigen-
functions as required. As results, we consider rarefaction
effect at the wall by varying Kn and by varying the value
of Pe, Br, the effects of the streamwise conduction and vis-
cous dissipation are examined. We carried out the calcula-
tion for Kn = 0.04, 0.08, since slip boundary conditions
may be used in 0.001 < Kn < 0.1. We assume that working
fluid is air, so Pr = 0.7, c = 1.4 are used in calculations.

3.1. Uniform temperature on the walls

In Fig. 2, the effects of Knudsen number on heat transfer
neglecting streamwise conduction and viscous dissipation
are shown. For Kn = 0, fully developed Nusselt number
approximates to 7.54 which is result of the classical Graetz
problem. The fully developed Nusselt number decreases as
Kn increases. This is due to the fact that the temperature
jump on the wall increases and the temperature gradient
on the wall decreases as Kn increases. The temperature
jump distributions on the wall along the channel wall are
shown in Fig. 3 for some Knudsen numbers.

Fig. 4 shows the effect of streamwise conduction on heat
transfer neglecting viscous dissipation and slip effect. To
show the change with Pe, the abscissa represents x/H in
Fig. 4 instead of x/(Pe Æ H) in other figures. As Pe
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Fig. 3. Temperature jump on the microchannel wall for uniform
temperature boundary condition.
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Fig. 4. Nusselt number distributions on the wall for uniform temperature
boundary condition. Streamwise conduction effects are considered
neglecting viscous dissipation and rarefied effects.
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Fig. 5. Nusselt number distribution on the wall for uniform temperature
boundary condition. Viscous dissipation effects are considered neglecting
streamwise conduction and rarefied effects.
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Fig. 6. Bulk mean temperature distributions for uniform temperature
boundary condition.
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increases, the Nusselt number increases around the inlet of
the channel, where convection heat transfer is dominant to
the conduction heat transfer. When we take the heat
conduction in streamwise x-direction into account, the
Nusselt number distribution for Pe = 1 is larger than that
obtained by neglecting the heat conduction in x-direction
as shown in Fig. 4. In other words, the heat transfer
to the wall increases if we consider the streamwise heat
conduction.

In Fig. 5, we show the effect of viscous dissipation on
heat transfer neglecting slip effect and streamwise con-
duction. The case of Br = 0 represents entire neglecting
of viscous dissipation in channel. Br > (<)0 means that
T0 > (<)Tw and the fluid is cooled (heated) in the chan-
nel. In particular, when Br < 0 (T0 < Tw), bulk mean
temperature Tm may be equal to the wall temperature Tw

at a point x = xc, where Nusselt number is meaningless.
This is obvious since Tm increases from T0 to some temper-
ature above Tw by heat generation due to the viscous dissi-
pation. To verify this explanation, hm(x) is shown in Fig. 6.
We notice that the sign of hm(x) changes when Br < 0 as
mentioned by Nield et al. [14]. Additional typical results
for the general cases where three parameters are different
from those of the classical Graetz problem are shown in
Fig. 7. At x!1, the fully developed Nusselt number
for Br 5 0 is independent of Br and different from that
for Br = 0 as shown in Fig. 5. Thermally fully developed
Nusselt number may be obtained from the fully developed
temperature field as
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Nu1 ¼

140C1

1þ 7C1 þ 140C1C2

for Br 6¼ 0

�4Y 01ð1ÞR 1

0
uY 1ðyÞdy

for Br ¼ 0

8>>><
>>>:

ð41Þ

Note that Nu1 for Br 5 0 is analytically determined con-
stant which is independent of Br while Nu1 for Br = 0
requires numerical calculation.

3.2. Uniform heat flux on the walls

In Fig. 8, we show the effect of Knudsen number on heat
transfer with Pe!1, Br = 0. For Kn = 0, the problem
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Fig. 8. Nusselt number distributions on the wall for uniform heat flux
boundary condition. Rarefied effects are considered neglecting viscous
dissipation and streamwise conduction.
reduces to the classical Graetz problem with uniform heat
flux boundary condition. The fully developed Nusselt num-
ber tends to 140/17 (	8.24) as x!1. As shown in Fig. 8,
the fully developed Nusselt number decreases as Kn

increases.
Fig. 9 shows the effect of Pe on the heat transfer. Note

that the abscissa represents x/H. As illustrated in Fig. 9,
the Nusselt number increases as Pe and, for Pe = 1, the
Nusselt number is larger when we take account of stream-
wise conduction.

In Fig. 10, the effects of viscous dissipation inside the
channel are considered. The case of Br > 0 (or Br < 0) rep-
resents qw > 0 (or qw < 0) and channel is heated (or cooled).
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Fig. 10. Nusselt number distributions on the wall for uniform heat flux
boundary condition. Viscous effects are considered neglecting streamwise
conduction and rarefied effects.



H.-E. Jeong, J.-T. Jeong / International Journal of Heat and Mass Transfer 49 (2006) 2151–2157 2157
We can see in Fig. 10 that Nu(x) decreases as Br increases.
Typical results for the general cases where three parameters
are different from those of the classical Graetz problem are
also shown in Fig. 7. The fully developed Nusselt number
for general case can be derived from Eq. (31), (39), (40) as

Nu1 ¼
420C4

1

C2
1ð35C2

1þ14C1þ2þ420C2
1C2ÞþBrð42C2

1þ33C1þ6Þ
ð42Þ

Unless Br is large with negative sign, Nu > 0 always. Tem-
perature jump between the channel wall and adjacent fluid
may be easily written as

hwðxÞ � hðx; 1Þ ¼ 4C2 ð43Þ
since oh

oy ðx; 1Þ ¼ 1. This temperature jump is a constant
which is proportional to Kn but independent of Pe and Br.

4. Conclusions

We have investigated the effects of rarefaction, stream-
wise conduction and viscous dissipation on Graetz problem
in a flat microchannel with the uniform temperature and
the uniform heat flux boundary conditions, respectively,
on the walls. The Nusselt number decreases as Knudsen
number or Brinkman number increases and as Peclet num-
ber decreases. When the streamwise conduction is included,
the Nusselt number is larger compared with that of Graetz
solution where streamwise conduction is neglected. We
have also found the fully developed Nusselt number for
the extended Graetz problems in terms of the parameters.
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